Targeting components of the alternative NHEJ pathway sensitizes KRAS mutant leukemic cells to chemotherapy.

نویسندگان

  • Patricia S Hähnel
  • Birgit Enders
  • Daniel Sasca
  • Wynand P Roos
  • Bernd Kaina
  • Lars Bullinger
  • Matthias Theobald
  • Thomas Kindler
چکیده

Activating KRAS mutations are detected in a substantial number of hematologic malignancies. In a murine T-cell acute lymphoblastic leukemia (T-ALL) model, we previously showed that expression of oncogenic Kras induced a premalignant state accompanied with an arrest in T-cell differentiation and acquisition of somatic Notch1 mutations. These findings prompted us to investigate whether the expression of oncogenic KRAS directly affects DNA damage repair. Applying divergent, but complementary, genetic approaches, we demonstrate that the expression of KRAS mutants is associated with increased expression of DNA ligase 3α, poly(ADP-ribose) polymerase 1 (PARP1), and X-ray repair cross-complementing protein 1 (XRCC1), all essential components of the error-prone, alternative nonhomologous end-joining (alt-NHEJ) pathway. Functional studies revealed delayed repair kinetics, increased misrepair of DNA double-strand breaks, and the preferential use of microhomologous DNA sequences for end joining. Similar effects were observed in primary murine T-ALL blasts. We further show that KRAS-mutated cells, but not KRAS wild-type cells, rely on the alt-NHEJ repair pathway on genotoxic stress. RNA interference-mediated knockdown of DNA ligase 3α abolished resistance to apoptotic cell death in KRAS-mutated cells. Our data indicate that targeting components of the alt-NHEJ pathway sensitizes KRAS-mutated leukemic cells to standard chemotherapeutics and represents a promising approach for inducing synthetic lethal vulnerability in cells harboring otherwise nondruggable KRAS mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibiting Tankyrases sensitizes KRAS-mutant cancer cells to MEK inhibitors via FGFR2 feedback signaling.

Tankyrases (TNKS) play roles in Wnt signaling, telomere homeostasis, and mitosis, offering attractive targets for anticancer treatment. Using unbiased combination screening in a large panel of cancer cell lines, we have identified a strong synergy between TNKS and MEK inhibitors (MEKi) in KRAS-mutant cancer cells. Our study uncovers a novel function of TNKS in the relief of a feedback loop indu...

متن کامل

Bilateral blockade of MEK- and PI3K-mediated pathways downstream of mutant KRAS as a treatment approach for peritoneal mucinous malignancies

Mucinous colorectal adenocarcinomas (MCAs) are clinically and morphologically distinct from nonmucinous colorectal cancers (CRCs), show a distinct spectrum of genetic alterations (higher KRAS mutations, lower p53, high MUC2), exhibit more aggressive behavior (more prone to peritoneal dissemination and lymph node involvement) and are associated with poorer response to chemotherapy with limited t...

متن کامل

Preclinical Development Knockdown of Oncogenic KRAS in Non–Small Cell Lung Cancers Suppresses Tumor Growth and Sensitizes Tumor Cells to Targeted Therapy

Oncogenic KRAS is found inmore than 25% of lung adenocarcinomas, the major histologic subtype of non– small cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS-muta...

متن کامل

Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy.

Oncogenic KRAS is found in more than 25% of lung adenocarcinomas, the major histologic subtype of non-small cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS-muta...

متن کامل

IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity

Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 123 15  شماره 

صفحات  -

تاریخ انتشار 2014